Minuto a Minuto

Ciencia y Tecnología Misión Crew-11 de la NASA regresa a la Tierra ante enfermedad de astronauta
Las condiciones médicas serias de uno de los tripulantes obligaron a la misión Crew-11 de la NASA a regresar a la Tierra antes de tiempo
Nacional Problemas en trenes complican avance en 5 líneas del Metro CDMX
La revisión a cuatro trenes y el retiro de otro retrasaron el servicio en cinco líneas del Metro CDMX
Nacional ¿La presidenta a prueba?
          Todo está en manos de la presidenta de la República y la iniciativa que, a partir de este documento, envíe al Congreso
Ciencia y Tecnología Desmantelan RedVDS, servicio ligado a fraudes millonarios
De acuerdo con Microsoft, RedVDS ofrecía, por un costo mensual desde 24 dólares, acceso a computadoras virtuales desechables que facilitaban la comisión de fraudes de manera económica, masiva y difícil de rastrear
Deportes Cruz Azul logra su primer triunfo en el Clausura
Cruz Azul suma tres puntos en dos partidos, mismo balance que el Atlas
Resistencia a antibióticos se expande 10 mil veces más rápido de lo esperado
Foto de Volodymyr Hryshchenko para Unsplash.

Investigadores de la Universidad Complutense de Madrid (UCM) y de la Universidad de Barcelona (UB) han revelado que “las bacterias pueden diseminar a distancia genes de resistencia a antibióticos con una eficiencia hasta 10 mil veces mayor de lo que se conocía hasta ahora”.

En plena pandemia de COVID-19, la resistencia a los antibióticos continúa siendo “el mayor problema sanitario de la humanidad. De hecho, el problema se está agravando con el SARS-CoV-2, debido al uso masivo de antibióticos”, indica la UCM en un comunicado.

Uno de los mayores retos contra la diseminación mundial de bacterias resistentes a los antibióticos en todos los ecosistemas, en el hombre, los animales y el medio ambiente, es “saber cómo se diseminan esos genes que le confieren a las bacterias resistencia a los antibióticos”.

La investigación, publicada en la revista científica ‘Journal of Antimicrobial Chemotherapy’, desvela un “sofisticado mecanismo que permite el empaquetamiento de genes de resistencia a antibióticos en virus bacterianos, los fagos, para su transporte a distancia” con el fin de convertir bacterias sensibles en resistentes.

La clave está en “la cooperación de los virus de bacterias, los fagos y los genes de resistencia a los antibióticos. Cuando éstos se encuentran en unos fragmentos de ADN llamados plásmidos multicopia, los fagos capturan de forma hipereficiente estos genes de resistencia, y son capaces de transportarlos a distancia hasta otras bacterias, inyectárselos y convertirlas en resistentes”.

El catedrático y director de la Unidad de Resistencia a Antibióticos de la UCM, Bruno González Zorn, y un grupo de investigadores de la UB, han detectado que estos “plásmidos multicopia son portadores de los genes de resistencia a antibióticos más peligrosos hasta el momento, como la resistencia a carbapenemas o colistina”, entre otros.

Esta investigación permitirá comprender por qué las resistencias se diseminan tan eficientemente, con el fin de desarrollar estrategias más eficaces para luchar contra ellas, concluye la Complutense.

Con información de EFE