Minuto a Minuto

Nacional FGR abre investigación tras descarrilamiento del Tren Interoceánico
La FGR inició una investigación para determinar las causas del descarrilamiento
Sin Categoría Radar Latam 360: Estos fueron los hechos más relevantes de 2025
Radar Latam 360 presenta su última edición de 2025 en la que recopila los hechos más relevantes en América Latina y el mundo
Nacional Hallan muerta a policía de la CDMX desaparecida; su novio, expolicía, la habría asesinado
Un expolicía fue detenido por el asesinato de su novia, la mujer policía Jazmín García, quien estaba reportada como desaparecida
Internacional Trump y Zelenski inician reunión para lograr la paz en Ucrania
Trump recibió en su residencia de Mar-a-lago al presidente Zelenski, a fin de lograr un acuerdo de paz para Ucrania
Nacional Claudia Sheinbaum, “atenta” a descarrilamiento del Corredor Interoceánico
"Estamos atentos", dijo la presidenta Claudia Sheinbaum respecto del descarrilamiento del Tren Interoceánico del Istmo de Tehuantepec
Inteligencia artificial descubre más de 160 mil nuevas especies de virus
Foto de Fusion Medical Animation en Unsplash

Un equipo internacional de científicos ha descubierto 161 mil 979 nuevas especies de virus de ARN gracias a una herramienta de aprendizaje automático que, según los investigadores, ayudará a conocer mejor la vida en la Tierra y permitirá seguir identificando los millones de virus que aún están por caracterizar.

Publicado en Cell y liderado por la Universidad de Sidney (Australia), el estudio es el mayor trabajo de descubrimiento de especies de virus y arroja luz sobre la vida que vive bajo nuestros pies y en todos los rincones del planeta.

“Se trata del mayor número de nuevas especies de virus descubiertas en un solo estudio, lo que amplía enormemente nuestro conocimiento de los virus que viven entre nosotros”, explica Edwards Holmes, autor principal del estudio y profesor en la Universidad de Sidney.

“Descubrir tantos virus nuevos de una sola vez es alucinante, y no hace más que arañar la superficie, abriendo un mundo de descubrimientos. Hay millones más por descubrir, y podemos aplicar este mismo enfoque a la identificación de bacterias y parásitos”, confía el investigador.

Aunque los virus de ARN suelen asociarse a enfermedades humanas, también se encuentran en entornos extremos de todo el mundo e incluso pueden desempeñar papeles clave en los ecosistemas globales.

En este estudio se encontraron viviendo en la atmósfera, en aguas termales y en respiraderos hidrotermales.

El hecho de que los entornos extremos alberguen tantos tipos de virus no es más que otro ejemplo de su extraordinaria diversidad y tenacidad para vivir en los entornos más hostiles, lo que podría darnos pistas sobre cómo surgieron los virus y otras formas de vida elementales”, comenta Holmes.

Una herramienta de inteligencia artificial

Para hacer el estudio, el equipo diseñó un algoritmo de aprendizaje profundo, LucaProt, capaz de calcular grandes cantidades de datos de secuencias genéticas, incluidos largos genomas de virus de hasta 47.250 nucleótidos e información genómicamente compleja para descubrir más de 160.000 virus.

“La inmensa mayoría de estos virus ya habían sido secuenciados y figuraban en bases de datos públicas, pero eran tan divergentes que nadie sabía lo que eran”, apunta Holmes.

Eran lo que suele denominarse ‘materia oscura’ de las secuencias. Nuestro método de IA fue capaz de organizar y clasificar toda esta información dispar, arrojando luz sobre el significado de esta materia oscura por primera vez”, añade.

La herramienta de IA se entrenó para calcular la materia oscura e identificar los virus basándose en las secuencias y las estructuras secundarias de la proteína que todos los virus de ARN utilizan para replicarse.

De este modo se pudo acelerar considerablemente el descubrimiento de virus, algo que, si se utilizasen métodos tradicionales, llevaría mucho tiempo.

“Antes dependíamos de tediosos procedimientos bioinformáticos para descubrir virus, lo que limitaba la diversidad que podíamos explorar pero ahora disponemos de un modelo basado en IA mucho más eficaz, que ofrece una sensibilidad y especificidad excepcionales y, al mismo tiempo, nos permite profundizar mucho más en la diversidad vírica. Tenemos previsto aplicar este modelo a diversas aplicaciones”, avanzó Mang Shi, coautor del estudio y director institucional de la Universidad Sun Yat-sen.

Con información de EFE